Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Long-term monitoring is of great clinical relevance. Accelerometers are often used to provide information about activities of daily living. The median frequency (fm) of acceleration has recently been suggested as a powerful parameter for activity recognition. However, compliance issues arise when people need to integrate activity recognition sensors into their daily lives. More functional placements should provide higher levels of conformity, but may also affect the quality and generalizability of the signals. How fm changes as a result of a more functional sensor placement remains unclear. This study investigates the agreement in fm for a sensor placed on the back with one in the pocket across a range of daily activities. The translational and gravitational accelerations are also computed to determine if the accelerometer should be fused with additional sensors to improve agreement. Twelve subjects were tested over four tasks and only the "vertical" x-axis showed a moderate agreement (Intraclass Correlation Coefficient of 0.54) after correction for outliers. Generalizability across traditional and functional sensor locations might therefore be limited. Differentiation of the signal into a translational and gravitational component decreased the level of agreement further, suggesting that combined information streams are more robust to changing locations then singular data streams. Integrating multiple sensor modalities to obtain specific components is unlikely to improve agreement across sensor locations. More research is needed to explore measurement signals of more user friendly sensor configurations that will lead to a greater clinical acceptance of body worn sensor systems.

Original publication

DOI

10.1016/j.measurement.2013.03.004

Type

Journal article

Journal

Measurement (Lond)

Publication Date

08/2013

Volume

46

Pages

2193 - 2200

Keywords

Accelerometry, Activity classification, Frequency domain, Placement, Signal processing