Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Acute traumatic brain injury (TBI) is a major cause of death and disability in young persons worldwide, producing a substantial economic burden on health services. New technology in computed tomography and magnetic resonance imaging is allowing the acquisition of more accurate and detailed information on cerebral pathology post-TBI. This has greatly improved prognostic ability in TBI and enables earlier identification of pathology, making it potentially amenable to therapeutic intervention. Recent advances in the management of TBI have been hampered by a lack of class I evidence arising from difficulties in applying strict study protocols to a patient subset as heterogeneous as post-TBI patients. The most definite benefits in terms of survival after TBI come from admission to a specialist neurosurgical centre, with goal-targeted therapy and intensive care services. Some traditional therapies for the treatment of acute TBI have been proven to be harmful and should be avoided. A number of management strategies have proved potentially beneficial post-TBI, but there is insufficient evidence to make definitive recommendations at present. Future therapies that are currently under investigation include decompressive craniectomy, progesterone therapy, and possibly therapeutic hypothermia.

Original publication

DOI

10.1007/s00068-008-8095-8

Type

Journal article

Journal

Eur J Trauma Emerg Surg

Publication Date

04/2009

Volume

35

Keywords

Brain, Imaging, Injury, Management, TBI, Trauma