Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Prostate specific antigen (PSA) is a well-established tumor marker that is frequently employed as model biomarker in the development and evaluation of emerging quantitative proteomics techniques, partially as a result of wide access to commercialized immunoassays serving as "gold standards." We designed a multiple reaction monitoring (MRM) assay to detect PSA proteoforms in clinical samples (n = 72), utilizing the specificity and sensitivity of the method. We report, for the first time, a PSA proteoform coded by SNP-L132I (rs2003783) that was observed in nine samples in both heterozygous (n = 7) and homozygous (n = 2) expression profiles. Other isoforms of PSA, derived from protein databases, were not identified by four unique proteotypic tryptic peptides. We have also utilized our MRM assay for precise quantitative analysis of PSA concentrations in both seminal and blood plasma samples. The analytical performance was evaluated, and close agreement was noted between quantitations based on three selected peptides (LSEPAELTDAVK, IVGGWECEK, and SVILLGR) and a routinely used commercialized immunoassay. Additionally, we disclose that the peptide IVGGWECEK is shared with kallikrein-related peptidase 2 and therefore is not unique for PSA. Thus, we propose the use of another tryptic sequence (SVILLGR) for accurate MRM quantification of PSA in clinical samples.

Original publication




Journal article


Mol Cell Proteomics

Publication Date





2761 - 2773


Biological Assay, Biomarkers, Tumor, Humans, Male, Oligopeptides, Plasma, Polymorphism, Single Nucleotide, Prostate-Specific Antigen, Prostatic Neoplasms, Protein Isoforms, Semen