Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Ischemia-reperfusion injury (IRI) results in profound allograft damage during liver transplantation. The process of IRI results in adenosine triphosphatase (ATP) depletion, the production of reactive oxygen species, and progressive tissue destruction. This injury process is accelerated on reperfusion in the recipient. Over the last decade an increasing body of literature has identified a complex interplay of molecular and cellular pathways responsible for causing IRI. This article summarizes recent developments, drawing on preclinical and clinical studies, focusing on how the detrimental effects of IRI can be prevented in liver transplantation. We present a balanced overview on how machine preservation technologies, the coagulation system, antioxidants, cytoprotective agents, cytokines, preservation solutions, and the innate and adaptive immune system can be targeted to prevent IRI in liver transplantation.

Original publication




Journal article


Transplant Proc

Publication Date





2083 - 2092


Animals, Cold Ischemia, Cytoprotection, Graft Survival, Humans, Liver Transplantation, Reperfusion Injury, Treatment Outcome, Warm Ischemia