Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Music genres can be seen as categorical descriptions used to classify music basing on various characteristics such as instrumentation, pitch, rhythmic structure, and harmonic contents. Automatic music genre classification is important for music retrieval in large music collections on the web. We build a classifier that learns from very few labeled examples plus a large quantity of unlabeled data, and show that our methodology outperforms existing supervised and unsupervised approaches. We also identify salient features useful for music genre classification. We achieve 97.1% accuracy of 10-way classification on real-world audio collections. © 2013 Springer-Verlag Berlin Heidelberg.

Original publication

DOI

10.1007/978-3-642-38989-4_26

Type

Conference paper

Publication Date

29/11/2013

Volume

7914 LNCS

Pages

254 - 263