Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Concept-level text analysis is superior to word-level analysis as it preserves the semantics associated with multi-word expressions. It offers a better understanding of text and helps to significantly increase the accuracy of many text mining tasks. Concept extraction from text is a key step in concept-level text analysis. In this paper, we propose a ConceptNet-based semantic parser that deconstructs natural language text into concepts based on the dependency relation between clauses. Our approach is domain-independent and is able to extract concepts from heterogeneous text. Through this parsing technique, 92.21% accuracy was obtained on a dataset of 3,204 concepts. We also show experimental results on three different text analysis tasks, on which the proposed framework outperformed state-of-the-art parsing techniques. © 2014 Springer-Verlag Berlin Heidelberg.

Original publication

DOI

10.1007/978-3-642-54906-9-10

Type

Conference paper

Publication Date

01/01/2014

Volume

8403 LNCS

Pages

113 - 127