Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Case-control studies are potentially open to misclassification of disease outcome which may be unrelated to risk factor exposure (non-differential), thus underestimating associations, or related to risk factor exposure (differential), thus causing more serious bias.We conducted a systematic literature review for methods of adjusting for outcome misclassification in case-control studies. We also applied methods to simulated data with known outcome misclassification to assess performance of these methods. Finally, real data from the Prostate Testing for Cancer and Treatment (ProtecT) randomised controlled trial gauged the usefulness of these methods.Adjustment methods range from recalculating cell frequencies to probabilistic sensitivity modelling and Bayesian models, which incorporate uncertainty in sensitivity and specificity estimates. Simulated data indicated that substantial bias in either direction resulted from differential misclassification. More sophisticated methods, incorporating uncertainty into estimates of misclassification, provided appropriately wide confidence intervals for corrected estimates of risk factor-disease association.Method choice depends on whether the objective is to assess if an observed association can be explained by bias, or to provide a 'corrected' estimate for the primary analysis. Accurate estimation of the degree of misclassification is important for the latter; otherwise further bias may be introduced.

Original publication




Journal article


Stat Methods Med Res

Publication Date





2377 - 2393


case–control study, misclassification of outcome, risk factors for prostate cancer, Bayes Theorem, Bias, Case-Control Studies, Humans, Male, Prostatic Neoplasms, Risk Factors, Sensitivity and Specificity, Uncertainty