Prostate cancer metabolite quantification relative to water in 1H-MRSI in vivo at 3 Tesla.
McLean MA., Barrett T., Gnanapragasam VJ., Priest AN., Joubert I., Lomas DJ., Neal DE., Griffiths JR., Sala E.
(1)H magnetic resonance spectroscopic imaging was performed on 16 men with suspected prostate cancer using an 8-channel external receive coil at 3 T. Choline and citrate (Cit) signals were measured in prostate lesions and normal-appearing peripheral zone as identified on T(2)-weighted images. Metabolites were quantified relative to unsuppressed water from a separately acquired magnetic resonance spectroscopic imaging dataset using LCModel. Validation experiments were also performed in a phantom containing physiological concentrations of choline, Cit, and creatine. In vitro, fair agreement between measured and true concentrations was observed, with the greatest discrepancy being a 35% underestimation of Cit. In vivo, one dataset was rejected for failure to meet the quality criterion of linewidth <15 Hz, and in 6 of 15 subjects, insufficient normal-appearing peripheral zone tissue was identified for study. Lesions were found to have higher choline and choline/Cit, and lower Cit, than normal-appearing peripheral zone. The smaller skew of data obtained using water normalization in comparison with metabolite ratios suggests potential usefulness in longitudinal tumor monitoring and in studies of treatment effects.