Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Wnt signaling is thought to be important in prostate cancer, in part because proteins such as beta-catenin can also affect androgen receptor signaling. beta-Catenin forms a cell adhesion complex with E-cadherin raising the possibility that loss of expression or a change in beta-catenin distribution in the cell could also alter downstream signaling, decreased inter-cellular adhesion and the promotion of metastasis. A number of studies have reported the altered expression and/or localization of beta-catenin as a biomarker in prostate cancer. METHODS: Tissue microarrays comprised of BPH and low, moderate and high-grade prostate cancer (n=77) were assessed for beta-catenin expression and distribution using immunohistochemistry. Staining was also performed on a tissue microarray containing tissue from patients before and after hormone manipulation. The effects of fixation and different antibodies was assessed on fixed LNCaP cell pellets and small prostate tissue microarrays. RESULTS: We have observed increased beta-catenin expression in only high Gleason score (>7) prostate cancer. A nuclear re-distribution of beta-catenin has previously been reported. We noted nuclear beta-catenin in benign prostatic hyperplasia and a gradual loss in nuclear distribution with increasing Gleason grade. We found no evidence for an alteration in beta-catenin expression or re-distribution with hormone ablation. Altered fixation, antibodies and antibody concentration did affect the intensity and specificity of staining. CONCLUSIONS: A loss of nuclear beta-catenin is the most consistent feature in prostate cancer rather than absolute levels of expression. We also suggest that variation in immunohistochemical protocols may explain variations in the reported literature.

Original publication

DOI

10.1002/pros.20780

Type

Journal article

Journal

Prostate

Publication Date

01/08/2008

Volume

68

Pages

1196 - 1205

Keywords

Animals, COS Cells, Carcinoma, Cattle, Cell Nucleus, Cercopithecus aethiops, Hormones, Humans, Immunohistochemistry, Kidney, Male, Mice, NIH 3T3 Cells, Prostate, Prostatic Neoplasms, Protein Array Analysis, Signal Transduction, beta Catenin