Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Peptide growth factors play a role in the maintenance of normal prostatic growth and differentiation (Fig. 2). It seems likely that the androgen sensitivity of human prostate is mediated by the production of peptide growth factors from stromal cells which act as the direct intermediate of androgen action on epithelial cells. TGF-beta 1 inhibition of epithelial cells is opposed by the stimulatory action of EGF, IGF and FGFs to maintain an equilibrium of epithelial cell numbers. The indirect mitogenic action of androgens appear to act by down-regulation of TGF-beta 1 and possibly EGF receptors. There is also interaction with the effects of IGF-II, produced by prostatic stromal cells and acting on epithelial cells to increase proliferation. The growth of normal prostatic fibroblasts is under the control of bFGF and TGF-beta 1. However, although our understanding of the actions of these growth factors in the normal prostate has improved over the last decade, their role in the development and maintenance of prostate cancer is less clearly defined. TGF-beta 1, classically considered to be inhibitory for epithelial cells, may be up-regulated in prostatic tumours, stimulating growth. Alternatively, autocrine production of such growth factors by tumour cells may lead to loss of inhibitory effects from exogenous TGF-beta 1, a mechanism also witnessed with TGF-alpha and bFGF. The role of EGF in the development of prostate cancer is confusing because results from the use of different cell types and experimental conditions is contradictory. It may be that a switch in the production of the predominant EGFr ligand from EGF to TGF-alpha is an important feature in the development and maintenance of the malignant phenotype. The presence of TGF-alpha autocrine loops has been shown clearly in some tumour cell lines. This switch in the production of a particular ligand may also be a feature of IGFs in prostate cancer. IGF-II may be replaced by IGF-I during malignant progression, both of which are able to act via the type 1 receptor. This change in IGF expression appears to be accompanied by altered expression of the IGF-BP2, with less detectable within prostatic tissues but elevated serum levels [58]. Basic FGF is normally produced by prostatic fibroblasts but is also produced by some prostatic cancer cell lines [64]. However, as with all growth factors, the expression of the bFGF protein and its receptor is dependent on the cell line examined. The autocrine and paracrine control of normal and abnormal prostatic growth by growth factors is important in determining their role in the development and maintenance of prostate cancer. Better understanding of such mechanisms is essential for the development of novel therapeutic strategies in the control and treatment of prostate cancer.

Type

Journal article

Journal

Br J Urol

Publication Date

05/1996

Volume

77

Pages

627 - 633

Keywords

Cell Division, Epidermal Growth Factor, Fibroblast Growth Factors, Humans, Male, Prostate, Somatomedins, Transforming Growth Factor alpha, Transforming Growth Factor beta