Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVES: The aim of this study was to define which measure of microvascular best predicts the extent of left ventricular (LV) infarction. BACKGROUND: Microvascular injury after ST-segment elevation myocardial infarction (STEMI) is an important determinant of outcome. Several invasive measures of the microcirculation at primary percutaneous coronary intervention (PPCI) have been described. One such measure is zero-flow pressure (Pzf), the calculated pressure at which coronary flow would cease. METHODS: In 34 STEMI patients, Pzf, hyperemic microvascular resistance (hMR), and index of microcirculatory resistance (IMR) were derived using thermodilution flow/pressure and Doppler flow/pressure wire assessment of the infarct-related artery following PPCI. The extent of infarction was determined by blinded late gadolinium enhancement on cardiac magnetic resonance at 6 months post-PPCI. Infarction of ≥24% total LV mass was used as a categorical cutoff in receiver-operating characteristic curve analysis. RESULTS: Pzf was superior to both hMR and IMR for predicting ≥24% infarction area under the curve: 0.94 for Pzf versus 0.74 for hMR (p = 0.04) and 0.54 for IMR (p = 0.003). Pzf ≥42 mm Hg was the optimal cutoff value, offering 100% sensitivity and 73% specificity. Patients with Pzf ≥42 mm Hg also had a lower salvage index (61.3 ± 8.1 vs. 44.4 ± 16.8, p = 0.006) and 6-month ejection fraction (62.4 ± 3.6 vs. 49.9 ± 9.6, p = 0.002). In addition, there were significant direct relationships between Pzf and troponin area under the curve (rho = 0.55, p = 0.002), final infarct mass (rho = 0.75, p < 0.0001), percentage of LV infarction and percent transmurality of infarction (rho = 0.77 and 0.74, respectively, p < 0.0001), and inverse relationships with myocardial salvage index (rho = -0.53, p = 0.01) and 6-month ejection fraction (rho = -0.73, p = 0.0001). CONCLUSIONS: Pzf measured at the time of PPCI is a better predictor of the extent of myocardial infarction than hMR or IMR. Pzf may provide important prognostic information at the time of PPCI and merits further investigation in clinical studies with relevant outcome measures.

Original publication

DOI

10.1016/j.jcin.2015.04.029

Type

Journal article

Journal

JACC Cardiovasc Interv

Publication Date

09/2015

Volume

8

Pages

1410 - 1421

Keywords

angioplasty, magnetic resonance imaging, microcirculation, myocardial infarction, physiology, Aged, Area Under Curve, Cardiac Catheterization, Contrast Media, Coronary Angiography, Coronary Circulation, Coronary Vessels, Echocardiography, Doppler, England, Female, Humans, Magnetic Resonance Imaging, Cine, Male, Microcirculation, Middle Aged, Myocardial Infarction, Myocardium, Percutaneous Coronary Intervention, Predictive Value of Tests, ROC Curve, Risk Assessment, Risk Factors, Thermodilution, Time Factors, Treatment Outcome, Vascular Resistance, Ventricular Function, Left