Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2016 Xu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Background and aims: The shortage of organs for transplantation has led to increased use of organs procured from donors after cardiac death (DCD). The effects of cardiac death on the liver remain poorly understood, however. Using livers obtained from DCD versus donors after brain death (DBD), we aimed to understand how ischemia/reperfusion (I/R) injury alters expression of pro-inflammatory markers ceramides and influences graft leukocyte infiltration. Methods: Hepatocyte inflammation, as assessed by ceramide expression, was evaluated in DCD (n = 13) and DBD (n = 10) livers. Allograft expression of inflammatory and cell death markers, and allograft leukocyte infiltration were evaluated from a contemporaneous independent cohort of DCD (n = 22) and DBD (n = 13) livers. Results: When examining the differences between transplant stages in each group, C18, C20, C24 ceramides showed significant difference in DBD (p<0.05) and C22 ceramide (p<0.05) were more pronounced for DCD. C18 ceramide is correlated to bilirubin, INR, and creatinine after transplant in DCD. Prior to transplantation, DCD livers have reduced leukocyte infiltration compared to DBD allografts. Following reperfusion, the neutrophil infiltration and platelet deposition was less prevalent in DCD grafts while cell death and recipients levels of serum aspartate aminotransferase (AST) of DCD allografts had significantly increased. Conclusion: These data suggest that I/R injury generate necrosis in the absence of a strong inflammatory response in DCD livers with an appreciable effect on early graft function. The long-term consequences of increased inflammation in DBD and increased cell death in DCD allografts are unknown and warrant further investigation.

Original publication

DOI

10.1371/journal.pone.0148815

Type

Conference paper

Publication Date

01/02/2016

Volume

11