Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Genetic risk scores were used as unconfounded instruments for specific lipid traits (Mendelian randomization) to assess whether circulating lipids causally influence prostate cancer risk. Data from 22,249 prostate cancer cases and 22,133 controls from 22 studies within the international PRACTICAL consortium were analyzed. Allele scores based on single nucleotide polymorphisms (SNPs) previously reported to be uniquely associated with each of low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglyceride (TG) levels, were first validated in an independent dataset, and then entered into logistic regression models to estimate the presence (and direction) of any causal effect of each lipid trait on prostate cancer risk. There was weak evidence for an association between the LDL genetic score and cancer grade: the odds ratio (OR) per genetically instrumented standard deviation (SD) in LDL, comparing high- (≥7 Gleason score) versus low-grade (<7 Gleason score) cancers was 1.50 (95% CI: 0.92, 2.46; P = 0.11). A genetically instrumented SD increase in TGs was weakly associated with stage: the OR for advanced versus localized cancer per unit increase in genetic risk score was 1.68 (95% CI: 0.95, 3.00; P = 0.08). The rs12916-T variant in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) was inversely associated with prostate cancer (OR: 0.97; 95% CI: 0.94, 1.00; P = 0.03). In conclusion, circulating lipids, instrumented by our genetic risk scores, did not appear to alter prostate cancer risk. We found weak evidence that higher LDL and TG levels increase aggressive prostate cancer risk, and that a variant in HMGCR (that mimics the LDL lowering effect of statin drugs) reduces risk. However, inferences are limited by sample size and evidence of pleiotropy.

Original publication

DOI

10.1002/cam4.695

Type

Journal article

Journal

Cancer Med

Publication Date

06/2016

Volume

5

Pages

1125 - 1136

Keywords

Cholesterol, Mendelian randomization, prostate cancer, statins, Case-Control Studies, Genetic Association Studies, Genetic Predisposition to Disease, Genetic Variation, Genome-Wide Association Study, Humans, Lipids, Male, Mendelian Randomization Analysis, Meta-Analysis as Topic, Neoplasm Grading, Neoplasm Staging, Odds Ratio, Polymorphism, Single Nucleotide, Population Surveillance, Prostatic Neoplasms, Quantitative Trait, Heritable