Altered Phenotype of β-Cells and Other Pancreatic Cell Lineages in Patients With Diffuse Congenital Hyperinsulinism in Infancy Caused by Mutations in the ATP-Sensitive K-Channel.
Salisbury RJ., Han B., Jennings RE., Berry AA., Stevens A., Mohamed Z., Sugden SA., De Krijger R., Cross SE., Johnson PPV., Newbould M., Cosgrove KE., Hanley KP., Banerjee I., Dunne MJ., Hanley NA.
Diffuse congenital hyperinsulinism in infancy (CHI-D) arises from mutations inactivating the KATP channel; however, the phenotype is difficult to explain from electrophysiology alone. Here we studied wider abnormalities in the β-cell and other pancreatic lineages. Islets were disorganized in CHI-D compared with controls. PAX4 and ARX expression was decreased. A tendency toward increased NKX2.2 expression was consistent with its detection in two-thirds of CHI-D δ-cell nuclei, similar to the fetal pancreas, and implied immature δ-cell function. CHI-D δ-cells also comprised 10% of cells displaying nucleomegaly. In CHI-D, increased proliferation was most elevated in duct (5- to 11-fold) and acinar (7- to 47-fold) lineages. Increased β-cell proliferation observed in some cases was offset by an increase in apoptosis; this is in keeping with no difference in INSULIN expression or surface area stained for insulin between CHI-D and control pancreas. However, nuclear localization of CDK6 and P27 was markedly enhanced in CHI-D β-cells compared with cytoplasmic localization in control cells. These combined data support normal β-cell mass in CHI-D, but with G1/S molecules positioned in favor of cell cycle progression. New molecular abnormalities in δ-cells and marked proliferative increases in other pancreatic lineages indicate CHI-D is not solely a β-cell disorder.