Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: The androgen receptor (AR) is the master regulator of prostate cancer cell metabolism. Degarelix is a novel gonadotrophin-releasing hormone blocker, used to decrease serum androgen levels in order to treat advanced human prostate cancer. Little is known of the rapid metabolic response of the human prostate cancer tissue samples to the decreased androgen levels. OBJECTIVES: To investigate the metabolic responses in benign and cancerous tissue samples from patients after treatment with Degarelix by using HRMAS 1H NMR spectroscopy. METHODS: Using non-destructive HR-MAS 1H NMR spectroscopy we analysed the metabolic changes induced by decreased AR signalling in human prostate cancer tissue samples. Absolute concentrations of the metabolites alanine, lactate, glutamine, glutamate, citrate, choline compounds [t-choline = choline + phosphocholine (PC) + glycerophosphocholine (GPC)], creatine compounds [t-creatine = creatine (Cr) + phosphocreatine (PCr)], taurine, myo-inositol and polyamines were measured in benign prostate tissue samples (n = 10), in prostate cancer specimens from untreated patients (n = 7) and prostate cancer specimens from patients treated with Degarelix (n = 6). RESULTS: Lactate, alanine and t-choline concentrations were significantly elevated in high-grade prostate cancer samples when compared to benign samples in untreated patients. Decreased androgen levels resulted in significant decreases of lactate and t-choline concentrations in human prostate cancer biopsies. CONCLUSIONS: The reduced concentrations of lactate and t-choline metabolites due to Degarelix could in principle be monitored by in vivo 1H MRS, which suggests that it would be possible to monitor the effects of physical or chemical castration in patients by that non-invasive method.

Original publication




Journal article



Publication Date





Cancer, Degarelix, HR-MAS, Metabolism, Metabolomics, NMR, Prostate