Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2017 Elsevier B.V. The advent of the Social Web has enabled anyone with an Internet connection to easily create and share their ideas, opinions and content with millions of other people around the world. In pace with a global deluge of videos from billions of computers, smartphones, tablets, university projectors and security cameras, the amount of multimodal content on the Web has been growing exponentially, and with that comes the need for decoding such information into useful knowledge. In this paper, a multimodal affective data analysis framework is proposed to extract user opinion and emotions from video content. In particular, multiple kernel learning is used to combine visual, audio and textual modalities. The proposed framework outperforms the state-of-the-art model in multimodal sentiment analysis research with a margin of 10–13% and 3–5% accuracy on polarity detection and emotion recognition, respectively. The paper also proposes an extensive study on decision-level fusion.

Original publication

DOI

10.1016/j.neucom.2016.09.117

Type

Journal article

Journal

Neurocomputing

Publication Date

25/10/2017

Volume

261

Pages

217 - 230