Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

� 2013 IEEE. Customer retention is a major issue for various service-based organizations particularly telecom industry, wherein predictive models for observing the behavior of customers are one of the great instruments in customer retention process and inferring the future behavior of the customers. However, the performances of predictive models are greatly affected when the real-world data set is highly imbalanced. A data set is called imbalanced if the samples size from one class is very much smaller or larger than the other classes. The most commonly used technique is over/under sampling for handling the class-imbalance problem (CIP) in various domains. In this paper, we survey six well-known sampling techniques and compare the performances of these key techniques, i.e., mega-trend diffusion function (MTDF), synthetic minority oversampling technique, adaptive synthetic sampling approach, couples top-N reverse k -nearest neighbor, majority weighted minority oversampling technique, and immune centroids oversampling technique. Moreover, this paper also reveals the evaluation of four rules-generation algorithms (the learning from example module, version 2 (LEM2), covering, exhaustive, and genetic algorithms) using publicly available data sets. The empirical results demonstrate that the overall predictive performance of MTDF and rules-generation based on genetic algorithms performed the best as compared with the rest of the evaluated oversampling methods and rule-generation algorithms.

Original publication

DOI

10.1109/ACCESS.2016.2619719

Type

Journal article

Journal

IEEE Access

Publication Date

01/01/2016

Volume

4

Pages

7940 - 7957