Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: Epidermal growth factor (EGF) is normally present as EGF(1-53). A variety of C terminal truncated forms have been used in preliminary trials for treating gastrointestinal injury but their relative potency and stability when used in a clinical setting are unclear. Therefore, we compared the biological activity of recombinant EGF(1-53), EGF(1-52), EGF(1-51), and the C terminal peptides EGF(44-53) and EGF(49-53). METHODS: Purity of forms was confirmed by mass spectrometry. Bioactivity of the different EGF forms was determined using [methyl-(3)H] thymidine incorporation into primary rat hepatocytes and their ability to reduce indomethacin (20 mg/kg subcutaneously)/restraint induced gastric injury in rats. Stability of EGF peptides was determined by serial sampling from a syringe driver system containing EGF/4% albumin in saline. RESULTS: Biological activity assays of EGF(1-53), EGF(1-52), and EGF(1-51) gave almost identical thymidine uptake dose-response curves (maximal responses increasing baseline uptake from 4400 (600) cpm (mean (SEM)) to about 22 000 (2000) cpm when EGF was added at 1. 6 nM). EGF(44-53) and EGF(49-53) did not stimulate (3)H thymidine uptake. Control rats had 47 (4) mm(2) damage/stomach, EGF(1-51), EGF(1-52), and EGF(1-53) at 0.16 and 0.80 nmol/kg/h each reduced gastric injury by about 50% and 80%, respectively (both doses p<0.01 compared with control but no significant difference between the different forms). EGF was stable at room temperature for seven days but biological activity decreased by 35% and 40% at two and three weeks, respectively (both p<0.01). Exposure to light did not affect bioactivity. CONCLUSION: EGF(1-51) and EGF(1-52) are as biologically active as full length EGF(1-53) but the C terminal penta- and decapeptides are ineffective. Clinical trials of EGF can probably use infusion systems for at least 48 hours at room temperature and with exposure to light, without reducing biological efficacy.

Type

Journal article

Journal

Gut

Publication Date

11/2000

Volume

47

Pages

622 - 627

Keywords

Analysis of Variance, Animals, Dose-Response Relationship, Drug, Drug Stability, Epidermal Growth Factor, Gastric Mucosa, Humans, Male, Mass Spectrometry, Peptide Fragments, Rats, Rats, Sprague-Dawley, Recombinant Proteins, Stomach Diseases, Thymidine