Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Filariasis is a global health problem targeted for elimination. Curative drugs (macrofilaricides) are required to accelerate elimination. Candidate macrofilaricides require testing in preclinical models of filariasis. The incidence of infection failures and high intra-group variation means that large group sizes are required for drug testing. Further, a lack of accurate, quantitative adult biomarkers results in protracted timeframes or multiple groups for endpoint analyses. Here we evaluate intra-vital ultrasonography (USG) to identify B. malayi in the peritonea of gerbils and CB.17 SCID mice and assess prognostic value in determining drug efficacy. USG operators, blinded to infection status, could detect intra-peritoneal filarial dance sign (ipFDS) with 100% specificity and sensitivity, when >5 B. malayi worms were present in SCID mice. USG ipFDS was predictive of macrofilaricidal activity in randomized, blinded studies comparing flubendazole, albendazole and vehicle-treated SCID mice. Semi-quantification of ipFDS could predict worm burden >10 with 87-100% accuracy in SCID mice or gerbils. We estimate that pre-assessment of worm burden by USG could reduce intra-group variation, obviate the need for surgical implantations in gerbils, and reduce total SCID mouse use by 40%. Thus, implementation of USG may reduce animal use, refine endpoints and negate invasive techniques for assessing anti-filarial drug efficacy.

Original publication

DOI

10.1038/s41598-018-24294-2

Type

Journal article

Journal

Sci Rep

Publication Date

12/04/2018

Volume

8