Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cardiovascular disease (CVD) is the number one cause of non-infectious morbidity and mortality in the world. The detection, measurement, and management of high blood pressure play an essential role in the prevention and control of CVDs. However, owing to the limitations and discomfort of traditional blood pressure (BP) detection techniques, many new cuff-less blood pressure approaches have been proposed and explored. Most of these involve arterial wave propagation theory, which is based on pulse arrival time (PAT), the time interval needed for a pulse wave to travel from the heart to some distal place on the body, such as the finger or earlobe. For this study, the Medical Information Mart for Intensive Care (MIMIC) database was used as a benchmark for PAT analysis. Many researchers who use the MIMIC database make the erroneous assumption that all the signals are synchronized. Therefore, we decided to investigate the calculation of PAT intervals in the MIMIC database and check its usefulness for evaluating BP. Our findings have important implications for the future use of the MIMIC database, especially for BP evaluation.

Original publication




Journal article


J Clin Med

Publication Date





blood pressure monitoring, digital medicine, global health, hypertension assessment, hypertension evaluation, pulse arrival time, pulse morphology, pulse oximeter, wearable devices