Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

First therapeutic device developed within the Institute of Biomedical Engineering (IBME) and the Nuffield Department of Surgical Sciences (NDS) completes regulatory approval on both sides of the Atlantic.

Preserving livers at body temperature has been shown to improve transplant success and to increase the number of viable donor livers available for transplant.
David Nasralla and Annemarie Weissenbacher, both transplant surgeons who recently completed their DPhil at NDS, operate the OrganOx metra during the COPE clinical trial

University spin-out OrganOx, a world leader in normothermic machine perfusion (NMP), recently announced that the U.S. Food and Drug Administration (FDA) has granted premarket approval (PMA) of its metra system. The metra is the first medical device to have emerged from research carried out in IBME and NDS at Oxford University. 

The OrganOx metra is a fully automated NMP device for the preservation and transport of donor livers destined for transplantation. The FDA marketing approval includes both livers from donors after brain death (DBD) and livers from donors after circulatory death (DCD) and is expected to greatly increase the number of organs available for liver transplantation in the United States.

The device is already CE-marked and has received a positive NICE recommendation in the UK, where it has been widely used since 2018, following on from a randomized clinical trial sponsored by the University of Oxford and published as a cover story in Nature in May 2018.

Resulting from cross-disciplinary biomedical engineering research at the University of Oxford’s Department of Engineering Science and NDS, with trials supported by the NIHR and EU, the OrganOx metra is the world’s first normothermic (i.e. normal body temperature) organ preservation device used for improved and prolonged preservation and functional testing of livers prior to transplantation.

Led by Professors Constantin Coussios FREng and Peter Friend FMedSci, this device was developed over the course of 15 years of research and it is the first to enable prolonged preservation of an organ in a functioning state outside the body. This makes it possible to (i) preserve organs for at least twice as long as conventional cold preservation techniques; (ii) assess the function of the graft during preservation before putting the recipient at risk; and (iii) safely use livers available within current donation practices that are currently perceived as being too risky for transplant, including fatty livers and organs from donors following circulatory death. It enables the safe utilisation of over 70% of livers which were until recently deemed unsuitable for transplant and makes it possible for hospitals to perform the majority of their transplants as a planned daytime procedure. 

After commercialisation, the OrganOx metra is today deployed and routinely used in all seven UK liver transplant centres with impressive early results, seeing an increase in annual liver transplant numbers within current donation practice. In 2019 OrganOx won the Medtech Insight Award for “best Proof-of-Value of an Innovation”, recognising the benefits of its normothermic perfusion platform in increasing the utilisation of donated organs.

Craig Marshall, OrganOx CEO, commented: 'We are thrilled with this news and excited to be able to bring our technology to the US, which we expect will increase the utilization of donor organs and thereby reduce waitlist mortality.  To date, the metra has supported more than 1,200 liver transplants worldwide, with several individual centres in Europe having transplanted more than 100 donor livers using our system.

There is a clear unmet clinical need for our device in the US where the situation is similar to Europe, with many patients dying on the waitlist and large numbers of donated organs that are not transplanted. With our device we aim to make more livers available for transplantation to ensure that more patients can benefit from this life saving procedure.'

Dr Stuart Knechtle, Executive Director of the Duke Transplant Center at Duke University School of Medicine and National Principal Investigator for the IDE Trial that supported PMA approval added: 'Through the IDE Trial we have seen the difference this technology can make to liver transplant outcomes. The biggest benefit of the metra is the ability to assess the function of the organ on the device, prior to committing to the transplant. This offers the potential to safely expand the pool of donor organs which would result in many more US patients receiving a liver transplant.'

Similar stories

Oxford's largest ever study into varicose veins shows need for surgery is linked to genetics

Varicose veins are a very common manifestation of chronic venous disease, affecting over 30% of the population in Western countries. In America, chronic venous disease affects over 11 million men and 22 million women aged 40–80 years old. Left untreated it can escalate to multiple health complications including leg ulcers and ultimately amputations. A new international study by Oxford researchers published on 2 June 2022 in Nature Communications establishes for the first time, a critical genetic risk score to predict the likelihood of patients suffering with varicose veins to require surgery, as well as pointing the way towards potential new therapies.

New reporting guidelines developed to improve AI in healthcare settings

New reporting guidelines, jointly published in Nature Medicine and the BMJ by Oxford researchers, will ensure that early studies on using Artificial Intelligence (AI) to treat real patients will give researchers the information needed to develop AI systems safely and effectively.

Results of the REF 2021: congratulations and thank you

Today, the UK funding bodies have published the results of the UK’s most recent national research assessment exercise, the Research Excellence Framework (REF) 2021.

Blog posts

Oxford MedSci goes silver: 10 Years of Athena SWAN

The Medical Sciences Division is celebrating 10 years since its first Athena Swan bronze application, and the first year in which all 16 of its departments have achieved a silver award. The silver award recognises commitment to gender equality, understanding culture and context, and more. Read about our department’s hard work and innovation.

Lights, camera, action! My journey into video production

Dr Hannah McGivern provides a 'behind-the-scenes' account of her experience producing the video 'Journey of a QUOD Sample: Donating to Transplant Research', supported by the funds from the University of Oxford Public Engagement with Research (PER) Seed Fund.

Mentoring in practice

NDS has launched a new, interdepartmental mentoring scheme called RECOGNISE. In this podcast, Gemma Horbatowski (HR Advisor) interviews Monica Dolton (Programme Manager and Research Project Manager) about her experiences of mentor-mentee relationships.