Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Predictive genetic tool developed to better inform men whether and when to take PSA blood test.

Prostate cancer detection currently relies on the prostate-specific antigen (PSA) screening blood test, which has been proven to reduce deaths from the disease. However, PSA testing is a poor screening tool because it can also produce false positive results and encourages over-detection of non-aggressive, slow-growing tumors.

An international team has now developed a genetic tool that has been proven to be able to predict the age of onset of aggressive prostate cancer, a disease that kills more than 26,000 American men annually.

The new tool may potentially be used to guide decisions about who to screen for prostate cancer and at what age.

The team used genome-wide association studies (GWAS) to determine whether a man’s genetic predisposition to developing prostate cancer could be used to predict his risk of developing the aggressive and lethal form of the disease.

GWAS search individual genomes for small variations, called single-nucleotide polymorphisms (SNPs), that occur more frequently in people with a particular disease than in people without the disease. Hundreds or thousands of SNPs can be evaluated at the same time in large groups of people. In this case, researchers used data from over 200,000 SNPs from 31,747 men of European ancestry participating in the ongoing international PRACTICAL consortium project.

Genotype, prostate cancer status and age were analyzed to select SNPs associated with prostate cancer diagnosis. Then the data was incorporated into a new prediction tool, the Polygenic Hazard Score, which involves survival analysis to estimate SNPs’ effects on age at diagnosis of aggressive prostate cancer. The results led to a Polygenic Hazard Score for Prostate Cancer that can estimate individual genetic risk. The Polygenic Hazard Score was then further tested on an independent dataset from the ProtecT study centered at the Nuffield Department of Surgical Sciences.

Ian Mills, John Black Associate Professor of Prostate Cancer at the Nuffield Department of Surgical Sciences, said: ‘The strength of this test is that an individual’s genotype does not change with age, so the polygenic hazard score can be calculated at any time and used as a tool for men deciding whether and when to undergo screening for prostate cancer.

‘This is particularly important for men at risk of developing prostate cancer at a very young age, before standard guidelines recommend screening.

‘However, we still need to study the clinical benefits before the polygenic hazard score is ready for routine use.’

First author on the paper, Dr Tyler Seibert of the University of California San Diego, said: ‘The polygenic hazard score was calculated from 54 SNPs and proved to be a highly significant predictor of age at diagnosis of aggressive prostate cancer.

‘When men in the ProtecT dataset with a high polygenic hazard score were compared to those with average PHS, their risk of aggressive prostate cancer was at least 2.9 times greater.

‘And when we account statistically for the effect of the GWAS having disproportionately high numbers of men with disease compared to the general population, we estimate that the risk defined by the polygenic hazard score is 4.6 times greater.’

The full paper, ‘Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large-scale cohorts’, can be read in the BMJ.

Funding for this research came, in part, the U.S. Department of Defense (grant w81xwh-13-1-0391), the Research Council of Norway, KG Jebsen Stiftelsen and South East Norway Health Authority.

Similar stories

Life-changing results from DRWF Human Islet Isolation Facility at NDS

A new documentary film launched by the Diabetes Research and Wellness Foundation (DRWF) on World Diabetes Day 2022 features an interview with Professor Paul Johnson, as he describes life-changing results from the DRWF Human Islet Isolation Facility at the Nuffield Department of Surgical Sciences (NDS).

Dimitrios Doultsinos wins Young Investigator Award from the Prostate Cancer Foundation

Dr Dimitrios Doultsinos, a John Black Research Fellow in Prostate Oncology at Oxford University's Nuffield Department of Surgical Sciences (NDS), was one of this year’s recipients of the highly coveted Prostate Cancer Foundation (PCF) Young Investigator Award.

Oxford gets £122m funding for healthcare research

Health and care research in Oxford is to receive £122 million in government funding over the next five years to improve diagnosis, treatment and care for NHS patients.

Blog posts

Staff Census: We need you!

All Medical Sciences staff are invited to log into HR self-service and ensure their contact, diversity background and disability details are up to date. Between 6% and 27% of staff in the Division are missing their diversity data which makes it difficult to complete statutory reporting, understand or track our population changes and to plan actions around staff diversity and equality – make sure your data is complete today!

Oxford MedSci goes silver: 10 Years of Athena SWAN

The Medical Sciences Division is celebrating 10 years since its first Athena Swan bronze application, and the first year in which all 16 of its departments have achieved a silver award. The silver award recognises commitment to gender equality, understanding culture and context, and more. Read about our department’s hard work and innovation.

Lights, camera, action! My journey into video production

Dr Hannah McGivern provides a 'behind-the-scenes' account of her experience producing the video 'Journey of a QUOD Sample: Donating to Transplant Research', supported by the funds from the University of Oxford Public Engagement with Research (PER) Seed Fund.