Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Predictive genetic tool developed to better inform men whether and when to take PSA blood test.

Prostate cancer detection currently relies on the prostate-specific antigen (PSA) screening blood test, which has been proven to reduce deaths from the disease. However, PSA testing is a poor screening tool because it can also produce false positive results and encourages over-detection of non-aggressive, slow-growing tumors.

An international team has now developed a genetic tool that has been proven to be able to predict the age of onset of aggressive prostate cancer, a disease that kills more than 26,000 American men annually.

The new tool may potentially be used to guide decisions about who to screen for prostate cancer and at what age.

The team used genome-wide association studies (GWAS) to determine whether a man’s genetic predisposition to developing prostate cancer could be used to predict his risk of developing the aggressive and lethal form of the disease.

GWAS search individual genomes for small variations, called single-nucleotide polymorphisms (SNPs), that occur more frequently in people with a particular disease than in people without the disease. Hundreds or thousands of SNPs can be evaluated at the same time in large groups of people. In this case, researchers used data from over 200,000 SNPs from 31,747 men of European ancestry participating in the ongoing international PRACTICAL consortium project.

Genotype, prostate cancer status and age were analyzed to select SNPs associated with prostate cancer diagnosis. Then the data was incorporated into a new prediction tool, the Polygenic Hazard Score, which involves survival analysis to estimate SNPs’ effects on age at diagnosis of aggressive prostate cancer. The results led to a Polygenic Hazard Score for Prostate Cancer that can estimate individual genetic risk. The Polygenic Hazard Score was then further tested on an independent dataset from the ProtecT study centered at the Nuffield Department of Surgical Sciences.

Ian Mills, John Black Associate Professor of Prostate Cancer at the Nuffield Department of Surgical Sciences, said: ‘The strength of this test is that an individual’s genotype does not change with age, so the polygenic hazard score can be calculated at any time and used as a tool for men deciding whether and when to undergo screening for prostate cancer.

‘This is particularly important for men at risk of developing prostate cancer at a very young age, before standard guidelines recommend screening.

‘However, we still need to study the clinical benefits before the polygenic hazard score is ready for routine use.’

First author on the paper, Dr Tyler Seibert of the University of California San Diego, said: ‘The polygenic hazard score was calculated from 54 SNPs and proved to be a highly significant predictor of age at diagnosis of aggressive prostate cancer.

‘When men in the ProtecT dataset with a high polygenic hazard score were compared to those with average PHS, their risk of aggressive prostate cancer was at least 2.9 times greater.

‘And when we account statistically for the effect of the GWAS having disproportionately high numbers of men with disease compared to the general population, we estimate that the risk defined by the polygenic hazard score is 4.6 times greater.’

The full paper, ‘Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large-scale cohorts’, can be read in the BMJ.

Funding for this research came, in part, the U.S. Department of Defense (grant w81xwh-13-1-0391), the Research Council of Norway, KG Jebsen Stiftelsen and South East Norway Health Authority.

Similar stories

Discovered gene patterns can predict prostate cancer treatment response

Nearly 40,000 men are diagnosed with prostate cancer each year in the UK. Perhaps the most significant clinical challenge today is deciding which type of treatment will work best for different patient groups.

Regent Lee wins top UKRI Future Leaders Fellowship

Dr Regent Lee of the Nuffield Department of Surgical Sciences is one of eight Oxford University academics who have been awarded significant financial funding from the UK Research and Innovation’s (UKRI) Future Leaders Fellowships Scheme.

Largest trial of carotid artery surgery and stenting finds similar long-term effects on stroke risk

Results from a major clinical trial demonstrate that both stenting and surgery are low-risk and similarly effective procedures for treating carotid artery disease.

New issue of JNDS now online

A new issue of the Journal of the Nuffield Department of Surgical Sciences (JNDS) has been published.

New Cochrane evidence highlights uncertainty about the interventions used to prevent and treat loss of smell after COVID-19 infection

Cochrane ENT at the Nuffield Department of Surgical Sciences has published two systematic reviews investigating the effectiveness and safety of interventions to prevent and treat loss of smell following COVID-19 infection.

Blog posts

My virtual work experience with NDS and NDORMS

Louise Tan, a Year 12 student from Ballyclare in County Antrim, Northern Ireland, recently attended the joint NDS and NDORMS Virtual Work Experience. In this guest blog, Louise reflects on her experience.

Celebrating women of NDS

To celebrate 100 years since women were admitted as full members of the University and on the occasion of International Women's Day, a group of inspirational women in the Nuffield Department of Surgical Sciences (NDS) reflect on their journeys, their place in Medical Sciences and their vision for the next 100 years.

The life of a research nurse: supporting the Oxford COVID-19 Vaccine Trial

Research nurses in the NHS are playing a crucial role in helping to trial new coronavirus treatments and vaccines. Three NDS research nurses stepped up to help with the fight against this new disease. Here Bhumika Patel shares her experience of working on the Oxford COVID-19 Vaccine Trial.

Why I became a Peer Supporter

The Peer Support Programme was developed in recognition of the essential role students play in supporting and encouraging one another on a day-to-day basis throughout their time at university. NDS’ own Helen Stark discusses her experience of becoming a Peer Supporter.

Racism under the microscope

As Black History Month gets underway in the UK, NDS Athena SWAN Coordinator Emily Hotine puts racism under the microscope.