Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Researchers at Oxford’s Nuffield Departments of Surgical Sciences (NDS) and Clinical Neurosciences (NDCN) have discovered that deep brain stimulation (DBS) of one particular brain location improves performance in a complex eye movement task that is known to require high level cognitive input.

Schematic illustration of ‘striatal damping’ by antidromic activation of striatopallidal axons. DA, dopaminergic; SNpc, substantia nigra pars compacta © James FitzGerald
Schematic illustration of ‘striatal damping’ by antidromic activation of striatopallidal axons. DA, dopaminergic; SNpc, substantia nigra pars compacta

This is the first direct evidence that DBS may eventually be able to treat cognitive impairment in Parkinson’s disease in addition to the movement related symptoms that it is presently used for. Their findings are published in the Journal of Neuroscience.

It is thought that around 1 in 500 people are affected by Parkinson’s disease, which means there are an estimated 127,000 people in the UK with the condition. According to the NHS, most people develop Parkinson's when they are over 50, although around 1 in 20 people with the condition first experience symptoms when they are under 40. Men are more likely to get Parkinson’s disease than women.  The disease has many symptoms, which are classified as either ‘motor’ or ‘non-motor’. Typical motor symptoms are tremor, stiffness, and slowness of movement, while non-motor symptoms include disturbances of various parts of the autonomic nervous system, difficulties with speech, and cognitive impairment. 

'Electrical stimulation of specific areas in the brain can effectively treat the motor symptoms of Parkinson’s, but exactly how this deep brain stimulation works is not fully understood,' said Dr James FitzGerald, a consultant neurosurgeon at NDS who co-authored the study with Dr Chrystalina Antoniades of NDCN, an expert in eye movements. 'Importantly, DBS is generally thought not to be effective for non-motor symptoms which patients often find very troubling.'

The researchers tested eye movements in Parkinson’s disease patients with DBS systems implanted in one of two locations in the brain: either the globus pallidus interna (GPi), or the subthalamic nucleus (STN), both of which are equally effective in treating motor symptoms. Like bodily movements, eye movements are known to be slowed down in PD, and stimulation at either of these locations improves the speed of simple reflexive eye movements such as looking towards a light when it goes on. The key finding in the study was that DBS could also improve performance in more complex tests that required input from higher cognitive centres, but only when the GPi was stimulated, not the STN.

Dr FitzGerald said: 'Part of the cause of Parkinsonian symptoms may be impairments in the way information flows from one circuit within the brain to another, as a result of overactivity of certain nerve cells in an area called the striatum. Our results suggest that one way that GPi DBS might be working is by calming down these overactive cells, thereby improving information flow between circuits. This appears to have benefits that go beyond simply controlling motor symptoms.'

Similar stories

Omair Shariq wins Best Clinical Paper at the American Association of Endocrine Surgeons 2021 Annual Meeting

Dr Omair Shariq, a DPhil student and clinical research fellow in the Nuffield Department of Surgical Sciences (NDS) and Oxford Centre for Diabetes Endocrinology and Metabolism (OCDEM), has received the 2021 Best Presentation for Clinical Research award during the 41st Annual Meeting of the American Association of Endocrine Surgeons (AAES), which was held virtually on 25-27 April 2021.

Artificial intelligence tool for streamlining pathology workflow

A multidisciplinary team, comprising Andrea Chatrian, Dr Richard Colling, Professor Clare Verrill, Professor Jens Rittscher and colleagues, develops an algorithm for automated requesting of additional investigation in diagnostically uncertain prostate biopsies.

Latest issue of JNDS now online

The latest issue of the Journal of the Nuffield Department of Surgical Sciences (JNDS) is now available to read.

New Cochrane evidence explores treatment options for chronic ear disease

A new Evidently Cochrane blog post for World Hearing Day summarises seven recent reviews on medical treatments for infection and inflammation of the middle ear.

New reporting guidelines to bridge the gap from development to implementation in clinical artificial intelligence

In a correspondence to Nature Medicine, a team of Oxford-led academics describe upcoming new guidelines to improve the reporting of early clinical stage (or first-with-human) evaluation of decision support systems driven by artificial intelligence.

Cochrane ENT awarded NIHR funding for COVID-19 project

Cochrane ENT at the Nuffield Department of Surgical Sciences has been awarded funding by the National Institute for Health Research (NIHR) to complete a suite of living systematic reviews investigating the effectiveness and safety of interventions to prevent and treat loss of smell after COVID-19 infection.

Blog posts

Celebrating women of NDS

To celebrate 100 years since women were admitted as full members of the University and on the occasion of International Women's Day, a group of inspirational women in the Nuffield Department of Surgical Sciences (NDS) reflect on their journeys, their place in Medical Sciences and their vision for the next 100 years.

The life of a research nurse: supporting the Oxford COVID-19 Vaccine Trial

Research nurses in the NHS are playing a crucial role in helping to trial new coronavirus treatments and vaccines. Three NDS research nurses stepped up to help with the fight against this new disease. Here Bhumika Patel shares her experience of working on the Oxford COVID-19 Vaccine Trial.

Why I became a Peer Supporter

The Peer Support Programme was developed in recognition of the essential role students play in supporting and encouraging one another on a day-to-day basis throughout their time at university. NDS’ own Helen Stark discusses her experience of becoming a Peer Supporter.

Racism under the microscope

As Black History Month gets underway in the UK, NDS Athena SWAN Coordinator Emily Hotine puts racism under the microscope.

In memory of Sue Bonnington

Pete Holding shares his memories of a much-loved colleague, Sue Bonnington. Based in Leicester, Sue worked remotely for the Nuffield Department of Surgical Sciences (NDS) as a ProtecT study Lead Research Nurse from 2002 to 2017.