Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Interrogating metabolic cross-talk in the tumour-bone microenvironment, new research from the Edwards Group shows how the pentose phosphate pathway contributes to prostate cancer bone metastasis.

Prostate cancer is the second leading cause of cancer-related death in men. While overall five-year survival rates for prostate cancer are 97.8%, in metastatic disease this falls to only 30%.

Once prostate cancer metastasises to bone, treatment options are limited and the malignancy becomes incurable. Prostate cancer cells are exquisitely dependent upon cellular interactions within the bone microenvironment to drive both tumour growth and survival and the development of the associated bone disease.

Research from Professor Claire Edwards’ team at the Botnar Research Centre, and published in Science Advances, identifies a new mechanism by which the bone microenvironment alters the energy requirements of prostate cancer cells to support disease progression. 

'The importance of cellular cross-talk within the tumour-bone microenvironment has long been recognised,' said Professor Edwards. 'In this study we show how bone cells alter the metabolic activity of prostate cancer cells.'

The first author of the study, Dr Jessica Whitburn, said: 'Through a collaboration with Professor Tomoyoshi Soga, Keio University, we used metabolomic profiling to identify changes in the pentose phosphate pathway. Genetic and pharmacologic manipulation of G6PD, the rate-limiting enzyme of this pathway, had a significant impact on prostate cancer cell growth, migration, metabolism and chemosensitivity. 

'The ability of cancer cells to reprogramme their cellular metabolism has recently been recognised as an additional hallmark of cancer. By understanding how the bone microenvironment drives the metabolic plasticity of prostate cancer cells, we reveal new mechanisms underlying disease pathogenesis and new metabolic targets for the treatment of prostate cancer bone metastasis.'

 

Similar stories

Oxford's largest ever study into varicose veins shows need for surgery is linked to genetics

Varicose veins are a very common manifestation of chronic venous disease, affecting over 30% of the population in Western countries. In America, chronic venous disease affects over 11 million men and 22 million women aged 40–80 years old. Left untreated it can escalate to multiple health complications including leg ulcers and ultimately amputations. A new international study by Oxford researchers published on 2 June 2022 in Nature Communications establishes for the first time, a critical genetic risk score to predict the likelihood of patients suffering with varicose veins to require surgery, as well as pointing the way towards potential new therapies.

New reporting guidelines developed to improve AI in healthcare settings

New reporting guidelines, jointly published in Nature Medicine and the BMJ by Oxford researchers, will ensure that early studies on using Artificial Intelligence (AI) to treat real patients will give researchers the information needed to develop AI systems safely and effectively.

Results of the REF 2021: congratulations and thank you

Today, the UK funding bodies have published the results of the UK’s most recent national research assessment exercise, the Research Excellence Framework (REF) 2021.

Blog posts

Oxford MedSci goes silver: 10 Years of Athena SWAN

The Medical Sciences Division is celebrating 10 years since its first Athena Swan bronze application, and the first year in which all 16 of its departments have achieved a silver award. The silver award recognises commitment to gender equality, understanding culture and context, and more. Read about our department’s hard work and innovation.

Lights, camera, action! My journey into video production

Dr Hannah McGivern provides a 'behind-the-scenes' account of her experience producing the video 'Journey of a QUOD Sample: Donating to Transplant Research', supported by the funds from the University of Oxford Public Engagement with Research (PER) Seed Fund.

Mentoring in practice

NDS has launched a new, interdepartmental mentoring scheme called RECOGNISE. In this podcast, Gemma Horbatowski (HR Advisor) interviews Monica Dolton (Programme Manager and Research Project Manager) about her experiences of mentor-mentee relationships.