Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

New research by the Consortium for Organ Preservation in Europe (COPE) has found that a new method to transport donor kidneys, which uses a combination of cold perfusion with oxygen, can significantly improve transplant results, with less graft failure, better function and lower rejection of the kidney when compared to cold perfusion alone. For patients who need a kidney transplant this is a big step forward. The study, carried out in Belgium, The Netherlands and the UK, was published today in The Lancet.

Organ transplant surgery

There is a persistent organ shortage and patients die on the transplant waiting list in all countries. In the UK, there are approximately 6,000 patients waiting for a kidney transplant, and 1 patient dies each day while waiting. Therefore, many centres will nowadays accept organs from older and higher-risk donors to reduce the gap between the needed and available number of transplant organs. This policy change comes with a consequence as more ‘difficult’ organs may not function properly or cause complications. 

Until recently, best practice for transporting kidneys from donor to recipient centre meant ice and a special preservation solution. “Previously, we were able to show that machine perfusion is better for the kidney than simple cold storage. Recently, however, science provided convincing data that the lack of oxygen between the removal and transplantation of the kidney was a major problem,” says Dr. Sijbrand Hofker, transplant surgeon at UMC Groningen and one of the study's researchers.

Therefore, COPE researchers from UZ Leuven, UMC Groningen and the University of Oxford developed a new strategy using kidney machine perfusion with continuous oxygenation before transplantation. This method was compared to perfusion without oxygen in a high-risk group of donor kidneys and the effect on clinical outcomes evaluated. Since a donor has two kidneys which are given to two different recipients, one kidney was treated with oxygenated perfusion and the other one without oxygen. Follow-up looked at immediate function, complications and results at one year after transplantation.

No difference was found in immediate function, however, during the first year more kidneys stopped working and failed in the group not treated with oxygen. Also, more rejection episodes occurred in kidneys without oxygenated perfusion. 

“When we looked at the kidneys that stopped functioning altogether over that year, and were therefore 'lost', or experienced acute rejection symptoms, there was a significant difference. Kidneys which had been given oxygen showed up to half as many acute rejection symptoms and the risk of kidney loss was greatly reduced,” says Professor Ina Jochmans, transplant surgeon at UZ Leuven and one of the study's co-ordinators.

The results of this study confirm what scientists have found out about the mechanism of oxygen deficiency causing damage. Pre-transplant oxygen deprivation initiates a complex reaction with a profound inflammatory response in the kidney after transplantation. This inflammation alerts the immune system and renders the organ more susceptible to rejection. In turn, this will cause scarring of the tissue, with a decline of function, eventually the kidney may stop working entirely.

As organs are nationally and internationally exchanged and donor kidneys have to travel hundreds of kilometres from donor to recipient, a dedicated logistical system had to be established as part of the trial to deliver organs on a perfusion machine safely and on time. This challenging cross-border trial was not only a scientific, but also an operational success, largely due to the great support of professionals, centres and authorities.

“We need clinical evidence to convince patients, professionals and health authorities which technologies add real clinical impact and should therefore be implemented in standard care, benefitting our patients,” says Professor Rutger Ploeg, Professor of Transplant Biology and transplant surgeon in the Nuffield Department of Surgical Sciences at the University of Oxford and co-ordinating principal investigator of the COPE Consortium.

“Such complex trials are only successful due to a multicentre, multidisciplinary and international collaboration with funding by large programmes such as HORIZON 2020. The COPE Consortium is a good example of how well cross-border clinical science can work.”

View the news release on the Oxford University website

Full paper: Oxygenated versus standard cold perfusion preservation in kidney transplantation (COMPARE): a randomised, doubleblind, paired, phase 3 trial. Published in The Lancet, 19 November 2020.

Similar stories

Discovered gene patterns can predict prostate cancer treatment response

Nearly 40,000 men are diagnosed with prostate cancer each year in the UK. Perhaps the most significant clinical challenge today is deciding which type of treatment will work best for different patient groups.

Regent Lee wins top UKRI Future Leaders Fellowship

Dr Regent Lee of the Nuffield Department of Surgical Sciences is one of eight Oxford University academics who have been awarded significant financial funding from the UK Research and Innovation’s (UKRI) Future Leaders Fellowships Scheme.

Largest trial of carotid artery surgery and stenting finds similar long-term effects on stroke risk

Results from a major clinical trial demonstrate that both stenting and surgery are low-risk and similarly effective procedures for treating carotid artery disease.

New issue of JNDS now online

A new issue of the Journal of the Nuffield Department of Surgical Sciences (JNDS) has been published.

New Cochrane evidence highlights uncertainty about the interventions used to prevent and treat loss of smell after COVID-19 infection

Cochrane ENT at the Nuffield Department of Surgical Sciences has published two systematic reviews investigating the effectiveness and safety of interventions to prevent and treat loss of smell following COVID-19 infection.

Blog posts

My virtual work experience with NDS and NDORMS

Louise Tan, a Year 12 student from Ballyclare in County Antrim, Northern Ireland, recently attended the joint NDS and NDORMS Virtual Work Experience. In this guest blog, Louise reflects on her experience.

Celebrating women of NDS

To celebrate 100 years since women were admitted as full members of the University and on the occasion of International Women's Day, a group of inspirational women in the Nuffield Department of Surgical Sciences (NDS) reflect on their journeys, their place in Medical Sciences and their vision for the next 100 years.

The life of a research nurse: supporting the Oxford COVID-19 Vaccine Trial

Research nurses in the NHS are playing a crucial role in helping to trial new coronavirus treatments and vaccines. Three NDS research nurses stepped up to help with the fight against this new disease. Here Bhumika Patel shares her experience of working on the Oxford COVID-19 Vaccine Trial.

Why I became a Peer Supporter

The Peer Support Programme was developed in recognition of the essential role students play in supporting and encouraging one another on a day-to-day basis throughout their time at university. NDS’ own Helen Stark discusses her experience of becoming a Peer Supporter.

Racism under the microscope

As Black History Month gets underway in the UK, NDS Athena SWAN Coordinator Emily Hotine puts racism under the microscope.