Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Aiming to improve treatment options for BRAF wild-type melanoma, we previously conducted the DOC-MEK study of docetaxel with MEK inhibitor (MEKi) selumetinib or placebo, revealing trends to prolongation of progression-free survival (hazard ratio 0.75, P = 0.130), and improved response rates (32% vs 14%, P = 0.059) with docetaxel plus selumetinib. NRAS status did not associate with outcome. Here, the aim was to identify novel biomarkers of response to MEKi. METHODS: A MEK 6 gene signature was quantified using NanoString and correlated with clinical outcomes. Two components of the gene signature were investigated by gene silencing in BRAF/NRAS wild-type melanoma cells. RESULTS: In melanomas of patients on the selumetinib but not the placebo arm, two gene signature components, dual-specificity protein phosphatase 4 (DUSP4) and ETS translocation variant 4 (ETV4), were expressed more highly in responders than non-responders. In vitro, ETV4 depletion inhibited cell survival but did not influence sensitivity to MEKi selumetinib or trametinib. In contrast, DUSP4-depleted cells showed enhanced cell survival and increased resistance to both selumetinib and trametinib. CONCLUSIONS: ETV4 and DUSP4 associated with clinical response to docetaxel plus selumetinib. DUSP4 depletion induced MEKi resistance, suggesting that DUSP4 is not only a biomarker but also a mediator of MEKi sensitivity. CLINICAL TRIAL REGISTRATION: DOC-MEK (EudraCT no: 2009-018153-23).

Original publication

DOI

10.1038/s41416-019-0673-5

Type

Journal article

Journal

Br J Cancer

Publication Date

02/2020

Volume

122

Pages

506 - 516

Keywords

Antineoplastic Combined Chemotherapy Protocols, Benzimidazoles, Docetaxel, Drug Resistance, Neoplasm, Dual-Specificity Phosphatases, Humans, MAP Kinase Kinase Kinases, Melanoma, Mitogen-Activated Protein Kinase Phosphatases, Proto-Oncogene Proteins B-raf, Proto-Oncogene Proteins c-ets, Transcriptome