Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In 15 patients with primary dystonia (six cervical and nine generalized dystonias) who were treated with bilateral chronic pallidal stimulation, we investigated the sensorimotor modulation of the oscillatory local field potentials (LFPs) recorded from the pallidal electrodes. We correlated these with the surface electromyograms in the affected muscles. The effects of involuntary, passive and voluntary movement and muscle-tendon vibration on frequency ranges of 0-3 Hz, theta (3-8 Hz), alpha (8-12 Hz), low (12-20 Hz) and high beta (20-30 Hz), and low (30-60 Hz) and high gamma (60-90 Hz) power were recorded and compared between cervical and generalized dystonia groups. Significant decreases in LFP synchronization at 8-20 Hz occurred during the sensory modulation produced by voluntary or passive movement or vibration. Voluntary movement also caused increased gamma band activity (30-90 Hz). Dystonic involuntary muscle spasms were specifically associated with increased theta, alpha and low beta (3-18 Hz). Furthermore, the increase in the frequency range of 3-20 Hz correlated with the strength of the muscle spasms and preceded them by approximately 320 ms. Differences in modulation of pallidal oscillation between cervical and generalized dystonias were also revealed. This study yields new insights into the pathophysiological mechanisms of primary dystonias and their treatment using pallidal deep brain stimulation.

Original publication

DOI

10.1093/brain/awn083

Type

Journal article

Journal

Brain

Publication Date

06/2008

Volume

131

Pages

1562 - 1573

Keywords

Adolescent, Adult, Aged, Analysis of Variance, Child, Child, Preschool, Deep Brain Stimulation, Dystonic Disorders, Electroencephalography, Electromyography, Evoked Potentials, Motor, Evoked Potentials, Somatosensory, Female, Globus Pallidus, Humans, Male, Middle Aged, Signal Processing, Computer-Assisted, Somatosensory Cortex