Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

As society battles with an obesity epidemic, new research from the Edwards group shows how increased body fat contributes to cancer establishment and progression.

Mouse bone marrow adipocytes stained with bodipy, a fluorescent dye that is taken up by lipid droplets

Multiple myeloma is an incurable haematological cancer associated with the expansion of abnormal plasma cells within the bone marrow and the development of destructive bone disease. In the last couple of decades, bone marrow fat cells (adipocytes) have emerged as having an important role in bone physiology in health and disease. Research from Professor Claire Edwards’ team at the Botnar Research Centre, University of Oxford, and published in the Journal of Bone and Mineral Research, identifies a new mechanism by which myeloma cells alter the bone microenvironment to support disease progression. 

“We have previously shown the importance of diet-induced obesity and low levels of adiponectin, a tumour-suppressive adipokine, in the development of myeloma’ said Professor Claire Edwards. “In this study we show how myeloma cells alter bone marrow adipocytes to regulate production of adiponectin”. The first author of the study, Dr Emma Morris, said “We found that in early-stage myeloma the amount of fat in the bones increased and that myeloma cells utilised the molecules the fat cells produce for growth and survival, with TNF-alpha found to be important in the downregulation of adiponectin”.

Myeloma has been described as an obesity-associated cancer with a 20% increased risk of disease progression in obese individuals. As society battles with an obesity epidemic, efforts to understand the contribution of increased body fat to cancer establishment and progression are becoming increasingly important, with growing evidence for a key role of bone marrow adipose tissue in cancers that arise in or metastasise to bone. 

Meet the team

Myeloma Cells Down‐Regulate Adiponectin in Bone Marrow Adipocytes Via TNF‐Alpha

Journal of Bone and Mineral Research (JBMR)

Similar stories

Latest issue of JNDS now online

Department Publication

The latest issue of the Journal of the Nuffield Department of Surgical Sciences (JNDS) is now available to read.

New Cochrane evidence explores treatment options for chronic ear disease

Publication Research

A new Evidently Cochrane blog post for World Hearing Day summarises seven recent reviews on medical treatments for infection and inflammation of the middle ear.

New reporting guidelines to bridge the gap from development to implementation in clinical artificial intelligence

Innovation Research

In a correspondence to Nature Medicine, a team of Oxford-led academics describe upcoming new guidelines to improve the reporting of early clinical stage (or first-with-human) evaluation of decision support systems driven by artificial intelligence.

Cochrane ENT awarded NIHR funding for COVID-19 project

Awards and appointments Coronavirus COVID-19 Research

Cochrane ENT at the Nuffield Department of Surgical Sciences has been awarded funding by the National Institute for Health Research (NIHR) to complete a suite of living systematic reviews investigating the effectiveness and safety of interventions to prevent and treat loss of smell after COVID-19 infection.

JNDS: new issue out now

Department Publication

Journal of the Nuffield Department of Surgical Sciences (JNDS) has published its next issue, featuring top case reports written by University of Oxford medical students during their clinical studies.

First peer-reviewed results of phase 3 human trials of Oxford coronavirus vaccine demonstrate efficacy

Coronavirus COVID-19 Publication Research

Today University of Oxford and AstraZeneca researchers present a pooled analysis of Phase 3 trials of a vaccine against SARS-CoV-2 across two different dose regimens, resulting in an average efficacy of 70.4%.